27 Projects in 27 days of AI Development Bootcamp
Requirements
-
Access to a Development Environment
-
Familiarity with Data Structures and Algorithms
-
Basic Mathematics and Statistics
-
Basic Programming Knowledge
Description
This AI Development Bootcamp is designed to guide learners through a series of 27 practical projects, each aiming to build foundational skills and a solid understanding of various AI concepts and machine learning techniques. The course begins with simple and approachable projects, gradually moving into more complex applications. By the end, participants will have an impressive portfolio of projects that span across diverse areas such as natural language processing, image classification, recommendation systems, predictive modeling, and more. Each project offers a hands-on learning experience and focuses on a particular machine learning concept, algorithm, or tool.
The journey begins with creating a basic calculator using Python. This project introduces participants to coding logic and familiarizes them with Python syntax. Although simple, this project is essential as it lays the groundwork for understanding how to design basic applications in Python. From here, learners move to a more complex task with an image classifier using Keras and TensorFlow. This project involves working with neural networks, enabling learners to build a model that can distinguish between different classes of images. Participants will gain experience with training and validating a neural network, understanding key concepts such as activation functions, convolutional layers, and data preprocessing.
A simple chatbot using predefined responses comes next, giving learners a taste of natural language processing. This project provides an introduction to building conversational agents, where the chatbot responds to user queries based on predefined rules. While it’s basic, it forms the foundation for more advanced NLP projects later on in the course. Moving on to the spam email detector using Scikit-learn, learners tackle text classification using machine learning. This project demonstrates how to process text data, extract relevant features, and classify messages as spam or not spam. Participants will work with techniques like TF-IDF vectorization and Naive Bayes, key tools in the NLP toolkit.
Human activity recognition using a smartphone dataset and Random Forest introduces the concept of supervised learning with time-series data. Here, participants will use accelerometer and gyroscope data to classify various physical activities. This project showcases the versatility of machine learning in handling complex, real-world data. Following this, sentiment analysis using NLTK allows learners to dive deeper into NLP by determining the sentiment behind text data. This project involves cleaning and tokenizing text, as well as using pre-built sentiment lexicons to analyze emotional undertones in social media posts, reviews, or comments.
Building a movie recommendation system using cosine similarity is another exciting project. Here, participants learn to create collaborative filtering systems, which are essential for personalizing user experiences in applications. By comparing user preferences and suggesting movies similar to what they have previously liked, participants gain insights into how recommendation engines function in popular platforms. Predicting house prices with linear regression then brings the focus back to supervised learning. Using historical data, learners build a model to predict house prices, introducing them to the basics of regression, data cleaning, and feature selection.
Weather forecasting using historical data takes learners through time-series prediction, an essential skill for handling sequential data. Participants will explore different modeling approaches to forecast weather trends. Following this, the bootcamp covers building a basic neural network from scratch. Here, participants write their own implementation of a neural network, learning about the intricacies of forward and backward propagation, weight updates, and optimization techniques. This project offers a hands-on approach to understanding neural networks at a granular level.
The course then progresses to stock price prediction using linear regression. This project teaches learners how to apply predictive modeling techniques to financial data, examining trends and patterns in stock prices. Predicting diabetes using logistic regression covers binary classification, where learners will predict the likelihood of diabetes in patients based on medical data. This project emphasizes the importance of healthcare data analytics and gives participants practical experience in building logistic regression models.
The dog vs. cat classifier project with a CNN introduces convolutional neural networks. This is a key project in image classification, as participants work on creating a model that differentiates between images of cats and dogs. With this project, learners gain a practical understanding of how CNNs work for image recognition tasks. Next, the Tic-Tac-Toe AI using the Minimax Algorithm introduces the concept of game theory and decision-making. The AI will learn to play optimally, providing participants with a foundation in developing game AI.
In credit card fraud detection using Scikit-learn, participants work on building a model that can identify fraudulent transactions, focusing on anomaly detection techniques. This project is highly applicable in financial services and demonstrates the importance of data-driven fraud detection systems. For Iris flower classification, learners utilize decision trees, one of the most interpretable machine learning algorithms. This project provides insight into how decision boundaries are formed and how simple classification algorithms operate.
Who this course is for:
- Aspiring AI Professionals: Individuals who want to break into the field of artificial intelligence and machine learning. Whether you are a beginner or someone with a technical background looking to transition into AI, this course will provide a comprehensive and practical foundation.